Рассчитать высоту треугольника со сторонами 110, 106 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{110 + 106 + 13}{2}} \normalsize = 114.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{114.5(114.5-110)(114.5-106)(114.5-13)}}{106}\normalsize = 12.5798544}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{114.5(114.5-110)(114.5-106)(114.5-13)}}{110}\normalsize = 12.1224051}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{114.5(114.5-110)(114.5-106)(114.5-13)}}{13}\normalsize = 102.574197}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 110, 106 и 13 равна 12.5798544
Высота треугольника опущенная с вершины A на сторону BC со сторонами 110, 106 и 13 равна 12.1224051
Высота треугольника опущенная с вершины C на сторону AB со сторонами 110, 106 и 13 равна 102.574197
Ссылка на результат
?n1=110&n2=106&n3=13
Найти высоту треугольника со сторонами 99, 85 и 59
Найти высоту треугольника со сторонами 139, 120 и 95
Найти высоту треугольника со сторонами 95, 74 и 39
Найти высоту треугольника со сторонами 134, 119 и 50
Найти высоту треугольника со сторонами 79, 75 и 74
Найти высоту треугольника со сторонами 102, 66 и 45
Найти высоту треугольника со сторонами 139, 120 и 95
Найти высоту треугольника со сторонами 95, 74 и 39
Найти высоту треугольника со сторонами 134, 119 и 50
Найти высоту треугольника со сторонами 79, 75 и 74
Найти высоту треугольника со сторонами 102, 66 и 45