Рассчитать высоту треугольника со сторонами 110, 78 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{110 + 78 + 50}{2}} \normalsize = 119}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{119(119-110)(119-78)(119-50)}}{78}\normalsize = 44.6320261}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{119(119-110)(119-78)(119-50)}}{110}\normalsize = 31.6481639}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{119(119-110)(119-78)(119-50)}}{50}\normalsize = 69.6259607}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 110, 78 и 50 равна 44.6320261
Высота треугольника опущенная с вершины A на сторону BC со сторонами 110, 78 и 50 равна 31.6481639
Высота треугольника опущенная с вершины C на сторону AB со сторонами 110, 78 и 50 равна 69.6259607
Ссылка на результат
?n1=110&n2=78&n3=50
Найти высоту треугольника со сторонами 133, 131 и 17
Найти высоту треугольника со сторонами 126, 96 и 82
Найти высоту треугольника со сторонами 32, 20 и 15
Найти высоту треугольника со сторонами 146, 96 и 74
Найти высоту треугольника со сторонами 126, 108 и 63
Найти высоту треугольника со сторонами 121, 111 и 62
Найти высоту треугольника со сторонами 126, 96 и 82
Найти высоту треугольника со сторонами 32, 20 и 15
Найти высоту треугольника со сторонами 146, 96 и 74
Найти высоту треугольника со сторонами 126, 108 и 63
Найти высоту треугольника со сторонами 121, 111 и 62