Рассчитать высоту треугольника со сторонами 110, 99 и 28
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{110 + 99 + 28}{2}} \normalsize = 118.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118.5(118.5-110)(118.5-99)(118.5-28)}}{99}\normalsize = 26.9342591}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118.5(118.5-110)(118.5-99)(118.5-28)}}{110}\normalsize = 24.2408332}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118.5(118.5-110)(118.5-99)(118.5-28)}}{28}\normalsize = 95.2318448}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 110, 99 и 28 равна 26.9342591
Высота треугольника опущенная с вершины A на сторону BC со сторонами 110, 99 и 28 равна 24.2408332
Высота треугольника опущенная с вершины C на сторону AB со сторонами 110, 99 и 28 равна 95.2318448
Ссылка на результат
?n1=110&n2=99&n3=28
Найти высоту треугольника со сторонами 145, 131 и 62
Найти высоту треугольника со сторонами 127, 125 и 64
Найти высоту треугольника со сторонами 142, 125 и 114
Найти высоту треугольника со сторонами 84, 79 и 22
Найти высоту треугольника со сторонами 144, 139 и 80
Найти высоту треугольника со сторонами 146, 133 и 128
Найти высоту треугольника со сторонами 127, 125 и 64
Найти высоту треугольника со сторонами 142, 125 и 114
Найти высоту треугольника со сторонами 84, 79 и 22
Найти высоту треугольника со сторонами 144, 139 и 80
Найти высоту треугольника со сторонами 146, 133 и 128