Рассчитать высоту треугольника со сторонами 110, 99 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{110 + 99 + 63}{2}} \normalsize = 136}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{136(136-110)(136-99)(136-63)}}{99}\normalsize = 62.4328587}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{136(136-110)(136-99)(136-63)}}{110}\normalsize = 56.1895729}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{136(136-110)(136-99)(136-63)}}{63}\normalsize = 98.108778}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 110, 99 и 63 равна 62.4328587
Высота треугольника опущенная с вершины A на сторону BC со сторонами 110, 99 и 63 равна 56.1895729
Высота треугольника опущенная с вершины C на сторону AB со сторонами 110, 99 и 63 равна 98.108778
Ссылка на результат
?n1=110&n2=99&n3=63
Найти высоту треугольника со сторонами 143, 142 и 73
Найти высоту треугольника со сторонами 147, 110 и 39
Найти высоту треугольника со сторонами 126, 119 и 71
Найти высоту треугольника со сторонами 73, 71 и 67
Найти высоту треугольника со сторонами 100, 68 и 67
Найти высоту треугольника со сторонами 137, 94 и 46
Найти высоту треугольника со сторонами 147, 110 и 39
Найти высоту треугольника со сторонами 126, 119 и 71
Найти высоту треугольника со сторонами 73, 71 и 67
Найти высоту треугольника со сторонами 100, 68 и 67
Найти высоту треугольника со сторонами 137, 94 и 46