Рассчитать высоту треугольника со сторонами 111, 108 и 73
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 108 + 73}{2}} \normalsize = 146}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146(146-111)(146-108)(146-73)}}{108}\normalsize = 69.7220132}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146(146-111)(146-108)(146-73)}}{111}\normalsize = 67.8376344}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146(146-111)(146-108)(146-73)}}{73}\normalsize = 103.150376}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 108 и 73 равна 69.7220132
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 108 и 73 равна 67.8376344
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 108 и 73 равна 103.150376
Ссылка на результат
?n1=111&n2=108&n3=73
Найти высоту треугольника со сторонами 109, 104 и 96
Найти высоту треугольника со сторонами 131, 109 и 94
Найти высоту треугольника со сторонами 56, 42 и 38
Найти высоту треугольника со сторонами 68, 53 и 16
Найти высоту треугольника со сторонами 127, 97 и 44
Найти высоту треугольника со сторонами 108, 75 и 67
Найти высоту треугольника со сторонами 131, 109 и 94
Найти высоту треугольника со сторонами 56, 42 и 38
Найти высоту треугольника со сторонами 68, 53 и 16
Найти высоту треугольника со сторонами 127, 97 и 44
Найти высоту треугольника со сторонами 108, 75 и 67