Рассчитать высоту треугольника со сторонами 111, 87 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 87 + 33}{2}} \normalsize = 115.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{115.5(115.5-111)(115.5-87)(115.5-33)}}{87}\normalsize = 25.4130854}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{115.5(115.5-111)(115.5-87)(115.5-33)}}{111}\normalsize = 19.9183643}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{115.5(115.5-111)(115.5-87)(115.5-33)}}{33}\normalsize = 66.9981343}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 87 и 33 равна 25.4130854
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 87 и 33 равна 19.9183643
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 87 и 33 равна 66.9981343
Ссылка на результат
?n1=111&n2=87&n3=33
Найти высоту треугольника со сторонами 113, 103 и 47
Найти высоту треугольника со сторонами 134, 134 и 39
Найти высоту треугольника со сторонами 113, 106 и 61
Найти высоту треугольника со сторонами 24, 15 и 10
Найти высоту треугольника со сторонами 121, 118 и 31
Найти высоту треугольника со сторонами 124, 101 и 50
Найти высоту треугольника со сторонами 134, 134 и 39
Найти высоту треугольника со сторонами 113, 106 и 61
Найти высоту треугольника со сторонами 24, 15 и 10
Найти высоту треугольника со сторонами 121, 118 и 31
Найти высоту треугольника со сторонами 124, 101 и 50