Рассчитать высоту треугольника со сторонами 111, 93 и 76
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{111 + 93 + 76}{2}} \normalsize = 140}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140(140-111)(140-93)(140-76)}}{93}\normalsize = 75.15346}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140(140-111)(140-93)(140-76)}}{111}\normalsize = 62.9664124}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140(140-111)(140-93)(140-76)}}{76}\normalsize = 91.9641024}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 111, 93 и 76 равна 75.15346
Высота треугольника опущенная с вершины A на сторону BC со сторонами 111, 93 и 76 равна 62.9664124
Высота треугольника опущенная с вершины C на сторону AB со сторонами 111, 93 и 76 равна 91.9641024
Ссылка на результат
?n1=111&n2=93&n3=76
Найти высоту треугольника со сторонами 24, 17 и 12
Найти высоту треугольника со сторонами 146, 142 и 106
Найти высоту треугольника со сторонами 146, 127 и 60
Найти высоту треугольника со сторонами 107, 85 и 31
Найти высоту треугольника со сторонами 91, 71 и 70
Найти высоту треугольника со сторонами 109, 97 и 31
Найти высоту треугольника со сторонами 146, 142 и 106
Найти высоту треугольника со сторонами 146, 127 и 60
Найти высоту треугольника со сторонами 107, 85 и 31
Найти высоту треугольника со сторонами 91, 71 и 70
Найти высоту треугольника со сторонами 109, 97 и 31