Рассчитать высоту треугольника со сторонами 112, 105 и 24

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{112 + 105 + 24}{2}} \normalsize = 120.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{120.5(120.5-112)(120.5-105)(120.5-24)}}{105}\normalsize = 23.5761664}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{120.5(120.5-112)(120.5-105)(120.5-24)}}{112}\normalsize = 22.102656}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{120.5(120.5-112)(120.5-105)(120.5-24)}}{24}\normalsize = 103.145728}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 112, 105 и 24 равна 23.5761664
Высота треугольника опущенная с вершины A на сторону BC со сторонами 112, 105 и 24 равна 22.102656
Высота треугольника опущенная с вершины C на сторону AB со сторонами 112, 105 и 24 равна 103.145728
Ссылка на результат
?n1=112&n2=105&n3=24