Рассчитать высоту треугольника со сторонами 112, 79 и 68
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{112 + 79 + 68}{2}} \normalsize = 129.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129.5(129.5-112)(129.5-79)(129.5-68)}}{79}\normalsize = 67.1645423}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129.5(129.5-112)(129.5-79)(129.5-68)}}{112}\normalsize = 47.3749897}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129.5(129.5-112)(129.5-79)(129.5-68)}}{68}\normalsize = 78.0293948}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 112, 79 и 68 равна 67.1645423
Высота треугольника опущенная с вершины A на сторону BC со сторонами 112, 79 и 68 равна 47.3749897
Высота треугольника опущенная с вершины C на сторону AB со сторонами 112, 79 и 68 равна 78.0293948
Ссылка на результат
?n1=112&n2=79&n3=68
Найти высоту треугольника со сторонами 48, 31 и 18
Найти высоту треугольника со сторонами 102, 70 и 35
Найти высоту треугольника со сторонами 78, 76 и 56
Найти высоту треугольника со сторонами 133, 96 и 84
Найти высоту треугольника со сторонами 82, 68 и 52
Найти высоту треугольника со сторонами 117, 96 и 77
Найти высоту треугольника со сторонами 102, 70 и 35
Найти высоту треугольника со сторонами 78, 76 и 56
Найти высоту треугольника со сторонами 133, 96 и 84
Найти высоту треугольника со сторонами 82, 68 и 52
Найти высоту треугольника со сторонами 117, 96 и 77