Рассчитать высоту треугольника со сторонами 112, 90 и 25
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{112 + 90 + 25}{2}} \normalsize = 113.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{113.5(113.5-112)(113.5-90)(113.5-25)}}{90}\normalsize = 13.2232014}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{113.5(113.5-112)(113.5-90)(113.5-25)}}{112}\normalsize = 10.6257868}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{113.5(113.5-112)(113.5-90)(113.5-25)}}{25}\normalsize = 47.6035251}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 112, 90 и 25 равна 13.2232014
Высота треугольника опущенная с вершины A на сторону BC со сторонами 112, 90 и 25 равна 10.6257868
Высота треугольника опущенная с вершины C на сторону AB со сторонами 112, 90 и 25 равна 47.6035251
Ссылка на результат
?n1=112&n2=90&n3=25
Найти высоту треугольника со сторонами 53, 50 и 12
Найти высоту треугольника со сторонами 95, 90 и 43
Найти высоту треугольника со сторонами 38, 36 и 3
Найти высоту треугольника со сторонами 95, 82 и 23
Найти высоту треугольника со сторонами 126, 93 и 66
Найти высоту треугольника со сторонами 117, 87 и 47
Найти высоту треугольника со сторонами 95, 90 и 43
Найти высоту треугольника со сторонами 38, 36 и 3
Найти высоту треугольника со сторонами 95, 82 и 23
Найти высоту треугольника со сторонами 126, 93 и 66
Найти высоту треугольника со сторонами 117, 87 и 47