Рассчитать высоту треугольника со сторонами 83, 62 и 44
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{83 + 62 + 44}{2}} \normalsize = 94.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{94.5(94.5-83)(94.5-62)(94.5-44)}}{62}\normalsize = 43.0814687}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{94.5(94.5-83)(94.5-62)(94.5-44)}}{83}\normalsize = 32.181338}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{94.5(94.5-83)(94.5-62)(94.5-44)}}{44}\normalsize = 60.7057058}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 83, 62 и 44 равна 43.0814687
Высота треугольника опущенная с вершины A на сторону BC со сторонами 83, 62 и 44 равна 32.181338
Высота треугольника опущенная с вершины C на сторону AB со сторонами 83, 62 и 44 равна 60.7057058
Ссылка на результат
?n1=83&n2=62&n3=44
Найти высоту треугольника со сторонами 142, 130 и 98
Найти высоту треугольника со сторонами 109, 64 и 58
Найти высоту треугольника со сторонами 130, 123 и 38
Найти высоту треугольника со сторонами 42, 25 и 21
Найти высоту треугольника со сторонами 146, 108 и 58
Найти высоту треугольника со сторонами 146, 121 и 95
Найти высоту треугольника со сторонами 109, 64 и 58
Найти высоту треугольника со сторонами 130, 123 и 38
Найти высоту треугольника со сторонами 42, 25 и 21
Найти высоту треугольника со сторонами 146, 108 и 58
Найти высоту треугольника со сторонами 146, 121 и 95