Рассчитать высоту треугольника со сторонами 113, 88 и 83
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 88 + 83}{2}} \normalsize = 142}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142(142-113)(142-88)(142-83)}}{88}\normalsize = 82.3215199}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142(142-113)(142-88)(142-83)}}{113}\normalsize = 64.1087943}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142(142-113)(142-88)(142-83)}}{83}\normalsize = 87.2806476}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 88 и 83 равна 82.3215199
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 88 и 83 равна 64.1087943
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 88 и 83 равна 87.2806476
Ссылка на результат
?n1=113&n2=88&n3=83
Найти высоту треугольника со сторонами 106, 103 и 4
Найти высоту треугольника со сторонами 147, 144 и 142
Найти высоту треугольника со сторонами 75, 72 и 55
Найти высоту треугольника со сторонами 89, 61 и 41
Найти высоту треугольника со сторонами 125, 83 и 83
Найти высоту треугольника со сторонами 109, 106 и 63
Найти высоту треугольника со сторонами 147, 144 и 142
Найти высоту треугольника со сторонами 75, 72 и 55
Найти высоту треугольника со сторонами 89, 61 и 41
Найти высоту треугольника со сторонами 125, 83 и 83
Найти высоту треугольника со сторонами 109, 106 и 63