Рассчитать высоту треугольника со сторонами 113, 90 и 32
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 90 + 32}{2}} \normalsize = 117.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117.5(117.5-113)(117.5-90)(117.5-32)}}{90}\normalsize = 24.7777622}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117.5(117.5-113)(117.5-90)(117.5-32)}}{113}\normalsize = 19.7345009}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117.5(117.5-113)(117.5-90)(117.5-32)}}{32}\normalsize = 69.6874562}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 90 и 32 равна 24.7777622
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 90 и 32 равна 19.7345009
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 90 и 32 равна 69.6874562
Ссылка на результат
?n1=113&n2=90&n3=32
Найти высоту треугольника со сторонами 134, 128 и 19
Найти высоту треугольника со сторонами 95, 92 и 22
Найти высоту треугольника со сторонами 99, 88 и 38
Найти высоту треугольника со сторонами 147, 136 и 112
Найти высоту треугольника со сторонами 144, 139 и 47
Найти высоту треугольника со сторонами 86, 76 и 47
Найти высоту треугольника со сторонами 95, 92 и 22
Найти высоту треугольника со сторонами 99, 88 и 38
Найти высоту треугольника со сторонами 147, 136 и 112
Найти высоту треугольника со сторонами 144, 139 и 47
Найти высоту треугольника со сторонами 86, 76 и 47