Рассчитать высоту треугольника со сторонами 113, 90 и 79
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 90 + 79}{2}} \normalsize = 141}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{141(141-113)(141-90)(141-79)}}{90}\normalsize = 78.5157875}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{141(141-113)(141-90)(141-79)}}{113}\normalsize = 62.534698}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{141(141-113)(141-90)(141-79)}}{79}\normalsize = 89.4483655}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 90 и 79 равна 78.5157875
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 90 и 79 равна 62.534698
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 90 и 79 равна 89.4483655
Ссылка на результат
?n1=113&n2=90&n3=79
Найти высоту треугольника со сторонами 136, 124 и 25
Найти высоту треугольника со сторонами 146, 95 и 89
Найти высоту треугольника со сторонами 110, 86 и 76
Найти высоту треугольника со сторонами 150, 136 и 119
Найти высоту треугольника со сторонами 90, 71 и 27
Найти высоту треугольника со сторонами 145, 121 и 85
Найти высоту треугольника со сторонами 146, 95 и 89
Найти высоту треугольника со сторонами 110, 86 и 76
Найти высоту треугольника со сторонами 150, 136 и 119
Найти высоту треугольника со сторонами 90, 71 и 27
Найти высоту треугольника со сторонами 145, 121 и 85