Рассчитать высоту треугольника со сторонами 114, 101 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 101 + 14}{2}} \normalsize = 114.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{114.5(114.5-114)(114.5-101)(114.5-14)}}{101}\normalsize = 5.51882067}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{114.5(114.5-114)(114.5-101)(114.5-14)}}{114}\normalsize = 4.88948147}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{114.5(114.5-114)(114.5-101)(114.5-14)}}{14}\normalsize = 39.8143491}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 101 и 14 равна 5.51882067
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 101 и 14 равна 4.88948147
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 101 и 14 равна 39.8143491
Ссылка на результат
?n1=114&n2=101&n3=14
Найти высоту треугольника со сторонами 102, 89 и 18
Найти высоту треугольника со сторонами 124, 109 и 71
Найти высоту треугольника со сторонами 97, 76 и 51
Найти высоту треугольника со сторонами 146, 142 и 122
Найти высоту треугольника со сторонами 53, 45 и 34
Найти высоту треугольника со сторонами 91, 82 и 63
Найти высоту треугольника со сторонами 124, 109 и 71
Найти высоту треугольника со сторонами 97, 76 и 51
Найти высоту треугольника со сторонами 146, 142 и 122
Найти высоту треугольника со сторонами 53, 45 и 34
Найти высоту треугольника со сторонами 91, 82 и 63