Рассчитать высоту треугольника со сторонами 114, 103 и 58
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 103 + 58}{2}} \normalsize = 137.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{137.5(137.5-114)(137.5-103)(137.5-58)}}{103}\normalsize = 57.8057663}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{137.5(137.5-114)(137.5-103)(137.5-58)}}{114}\normalsize = 52.228017}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{137.5(137.5-114)(137.5-103)(137.5-58)}}{58}\normalsize = 102.655068}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 103 и 58 равна 57.8057663
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 103 и 58 равна 52.228017
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 103 и 58 равна 102.655068
Ссылка на результат
?n1=114&n2=103&n3=58
Найти высоту треугольника со сторонами 131, 129 и 52
Найти высоту треугольника со сторонами 135, 112 и 101
Найти высоту треугольника со сторонами 103, 82 и 76
Найти высоту треугольника со сторонами 143, 104 и 42
Найти высоту треугольника со сторонами 142, 105 и 67
Найти высоту треугольника со сторонами 122, 83 и 48
Найти высоту треугольника со сторонами 135, 112 и 101
Найти высоту треугольника со сторонами 103, 82 и 76
Найти высоту треугольника со сторонами 143, 104 и 42
Найти высоту треугольника со сторонами 142, 105 и 67
Найти высоту треугольника со сторонами 122, 83 и 48