Рассчитать высоту треугольника со сторонами 114, 109 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 109 + 26}{2}} \normalsize = 124.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{124.5(124.5-114)(124.5-109)(124.5-26)}}{109}\normalsize = 25.9218974}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{124.5(124.5-114)(124.5-109)(124.5-26)}}{114}\normalsize = 24.7849721}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{124.5(124.5-114)(124.5-109)(124.5-26)}}{26}\normalsize = 108.67257}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 109 и 26 равна 25.9218974
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 109 и 26 равна 24.7849721
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 109 и 26 равна 108.67257
Ссылка на результат
?n1=114&n2=109&n3=26
Найти высоту треугольника со сторонами 98, 97 и 22
Найти высоту треугольника со сторонами 132, 107 и 104
Найти высоту треугольника со сторонами 119, 67 и 53
Найти высоту треугольника со сторонами 129, 105 и 91
Найти высоту треугольника со сторонами 148, 138 и 79
Найти высоту треугольника со сторонами 132, 119 и 70
Найти высоту треугольника со сторонами 132, 107 и 104
Найти высоту треугольника со сторонами 119, 67 и 53
Найти высоту треугольника со сторонами 129, 105 и 91
Найти высоту треугольника со сторонами 148, 138 и 79
Найти высоту треугольника со сторонами 132, 119 и 70