Рассчитать высоту треугольника со сторонами 115, 106 и 86
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 106 + 86}{2}} \normalsize = 153.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153.5(153.5-115)(153.5-106)(153.5-86)}}{106}\normalsize = 82.1310502}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153.5(153.5-115)(153.5-106)(153.5-86)}}{115}\normalsize = 75.7034028}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153.5(153.5-115)(153.5-106)(153.5-86)}}{86}\normalsize = 101.231294}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 106 и 86 равна 82.1310502
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 106 и 86 равна 75.7034028
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 106 и 86 равна 101.231294
Ссылка на результат
?n1=115&n2=106&n3=86
Найти высоту треугольника со сторонами 124, 104 и 21
Найти высоту треугольника со сторонами 84, 55 и 51
Найти высоту треугольника со сторонами 132, 131 и 76
Найти высоту треугольника со сторонами 107, 87 и 33
Найти высоту треугольника со сторонами 128, 106 и 73
Найти высоту треугольника со сторонами 62, 46 и 19
Найти высоту треугольника со сторонами 84, 55 и 51
Найти высоту треугольника со сторонами 132, 131 и 76
Найти высоту треугольника со сторонами 107, 87 и 33
Найти высоту треугольника со сторонами 128, 106 и 73
Найти высоту треугольника со сторонами 62, 46 и 19