Рассчитать высоту треугольника со сторонами 115, 113 и 9
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 113 + 9}{2}} \normalsize = 118.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118.5(118.5-115)(118.5-113)(118.5-9)}}{113}\normalsize = 8.8457193}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118.5(118.5-115)(118.5-113)(118.5-9)}}{115}\normalsize = 8.6918807}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118.5(118.5-115)(118.5-113)(118.5-9)}}{9}\normalsize = 111.06292}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 113 и 9 равна 8.8457193
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 113 и 9 равна 8.6918807
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 113 и 9 равна 111.06292
Ссылка на результат
?n1=115&n2=113&n3=9
Найти высоту треугольника со сторонами 125, 100 и 71
Найти высоту треугольника со сторонами 150, 91 и 65
Найти высоту треугольника со сторонами 148, 126 и 96
Найти высоту треугольника со сторонами 91, 81 и 75
Найти высоту треугольника со сторонами 90, 89 и 85
Найти высоту треугольника со сторонами 140, 115 и 101
Найти высоту треугольника со сторонами 150, 91 и 65
Найти высоту треугольника со сторонами 148, 126 и 96
Найти высоту треугольника со сторонами 91, 81 и 75
Найти высоту треугольника со сторонами 90, 89 и 85
Найти высоту треугольника со сторонами 140, 115 и 101