Рассчитать высоту треугольника со сторонами 116, 100 и 84
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 100 + 84}{2}} \normalsize = 150}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{150(150-116)(150-100)(150-84)}}{100}\normalsize = 82.048766}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{150(150-116)(150-100)(150-84)}}{116}\normalsize = 70.7316948}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{150(150-116)(150-100)(150-84)}}{84}\normalsize = 97.6771024}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 100 и 84 равна 82.048766
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 100 и 84 равна 70.7316948
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 100 и 84 равна 97.6771024
Ссылка на результат
?n1=116&n2=100&n3=84
Найти высоту треугольника со сторонами 120, 66 и 59
Найти высоту треугольника со сторонами 143, 115 и 52
Найти высоту треугольника со сторонами 141, 85 и 67
Найти высоту треугольника со сторонами 109, 92 и 52
Найти высоту треугольника со сторонами 140, 115 и 101
Найти высоту треугольника со сторонами 113, 111 и 54
Найти высоту треугольника со сторонами 143, 115 и 52
Найти высоту треугольника со сторонами 141, 85 и 67
Найти высоту треугольника со сторонами 109, 92 и 52
Найти высоту треугольника со сторонами 140, 115 и 101
Найти высоту треугольника со сторонами 113, 111 и 54