Рассчитать высоту треугольника со сторонами 116, 103 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 103 + 67}{2}} \normalsize = 143}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143(143-116)(143-103)(143-67)}}{103}\normalsize = 66.5241698}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143(143-116)(143-103)(143-67)}}{116}\normalsize = 59.0688749}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143(143-116)(143-103)(143-67)}}{67}\normalsize = 102.2685}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 103 и 67 равна 66.5241698
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 103 и 67 равна 59.0688749
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 103 и 67 равна 102.2685
Ссылка на результат
?n1=116&n2=103&n3=67
Найти высоту треугольника со сторонами 117, 100 и 87
Найти высоту треугольника со сторонами 127, 88 и 53
Найти высоту треугольника со сторонами 119, 87 и 70
Найти высоту треугольника со сторонами 108, 103 и 68
Найти высоту треугольника со сторонами 56, 34 и 30
Найти высоту треугольника со сторонами 124, 111 и 78
Найти высоту треугольника со сторонами 127, 88 и 53
Найти высоту треугольника со сторонами 119, 87 и 70
Найти высоту треугольника со сторонами 108, 103 и 68
Найти высоту треугольника со сторонами 56, 34 и 30
Найти высоту треугольника со сторонами 124, 111 и 78