Рассчитать высоту треугольника со сторонами 116, 104 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 104 + 19}{2}} \normalsize = 119.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{119.5(119.5-116)(119.5-104)(119.5-19)}}{104}\normalsize = 15.5225659}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{119.5(119.5-116)(119.5-104)(119.5-19)}}{116}\normalsize = 13.9167832}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{119.5(119.5-116)(119.5-104)(119.5-19)}}{19}\normalsize = 84.9656236}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 104 и 19 равна 15.5225659
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 104 и 19 равна 13.9167832
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 104 и 19 равна 84.9656236
Ссылка на результат
?n1=116&n2=104&n3=19
Найти высоту треугольника со сторонами 72, 71 и 17
Найти высоту треугольника со сторонами 150, 142 и 139
Найти высоту треугольника со сторонами 53, 29 и 28
Найти высоту треугольника со сторонами 112, 110 и 88
Найти высоту треугольника со сторонами 64, 44 и 29
Найти высоту треугольника со сторонами 147, 101 и 87
Найти высоту треугольника со сторонами 150, 142 и 139
Найти высоту треугольника со сторонами 53, 29 и 28
Найти высоту треугольника со сторонами 112, 110 и 88
Найти высоту треугольника со сторонами 64, 44 и 29
Найти высоту треугольника со сторонами 147, 101 и 87