Рассчитать высоту треугольника со сторонами 116, 108 и 71
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 108 + 71}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-116)(147.5-108)(147.5-71)}}{108}\normalsize = 69.3883871}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-116)(147.5-108)(147.5-71)}}{116}\normalsize = 64.6029811}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-116)(147.5-108)(147.5-71)}}{71}\normalsize = 105.548532}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 108 и 71 равна 69.3883871
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 108 и 71 равна 64.6029811
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 108 и 71 равна 105.548532
Ссылка на результат
?n1=116&n2=108&n3=71
Найти высоту треугольника со сторонами 145, 113 и 87
Найти высоту треугольника со сторонами 116, 96 и 35
Найти высоту треугольника со сторонами 49, 47 и 27
Найти высоту треугольника со сторонами 117, 114 и 7
Найти высоту треугольника со сторонами 62, 57 и 47
Найти высоту треугольника со сторонами 145, 116 и 52
Найти высоту треугольника со сторонами 116, 96 и 35
Найти высоту треугольника со сторонами 49, 47 и 27
Найти высоту треугольника со сторонами 117, 114 и 7
Найти высоту треугольника со сторонами 62, 57 и 47
Найти высоту треугольника со сторонами 145, 116 и 52