Рассчитать высоту треугольника со сторонами 116, 109 и 62

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 109 + 62}{2}} \normalsize = 143.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143.5(143.5-116)(143.5-109)(143.5-62)}}{109}\normalsize = 61.1201128}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143.5(143.5-116)(143.5-109)(143.5-62)}}{116}\normalsize = 57.4318301}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143.5(143.5-116)(143.5-109)(143.5-62)}}{62}\normalsize = 107.453102}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 109 и 62 равна 61.1201128
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 109 и 62 равна 57.4318301
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 109 и 62 равна 107.453102
Ссылка на результат
?n1=116&n2=109&n3=62