Рассчитать высоту треугольника со сторонами 116, 114 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 114 + 12}{2}} \normalsize = 121}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121(121-116)(121-114)(121-12)}}{114}\normalsize = 11.9196938}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121(121-116)(121-114)(121-12)}}{116}\normalsize = 11.7141819}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121(121-116)(121-114)(121-12)}}{12}\normalsize = 113.237091}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 114 и 12 равна 11.9196938
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 114 и 12 равна 11.7141819
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 114 и 12 равна 113.237091
Ссылка на результат
?n1=116&n2=114&n3=12
Найти высоту треугольника со сторонами 110, 101 и 79
Найти высоту треугольника со сторонами 150, 135 и 117
Найти высоту треугольника со сторонами 111, 104 и 28
Найти высоту треугольника со сторонами 106, 63 и 60
Найти высоту треугольника со сторонами 111, 98 и 43
Найти высоту треугольника со сторонами 109, 103 и 70
Найти высоту треугольника со сторонами 150, 135 и 117
Найти высоту треугольника со сторонами 111, 104 и 28
Найти высоту треугольника со сторонами 106, 63 и 60
Найти высоту треугольника со сторонами 111, 98 и 43
Найти высоту треугольника со сторонами 109, 103 и 70