Рассчитать высоту треугольника со сторонами 116, 68 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 68 + 60}{2}} \normalsize = 122}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122(122-116)(122-68)(122-60)}}{68}\normalsize = 46.043608}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122(122-116)(122-68)(122-60)}}{116}\normalsize = 26.9910806}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122(122-116)(122-68)(122-60)}}{60}\normalsize = 52.1827558}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 68 и 60 равна 46.043608
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 68 и 60 равна 26.9910806
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 68 и 60 равна 52.1827558
Ссылка на результат
?n1=116&n2=68&n3=60
Найти высоту треугольника со сторонами 39, 25 и 23
Найти высоту треугольника со сторонами 133, 117 и 64
Найти высоту треугольника со сторонами 60, 47 и 35
Найти высоту треугольника со сторонами 68, 53 и 51
Найти высоту треугольника со сторонами 130, 118 и 20
Найти высоту треугольника со сторонами 94, 65 и 32
Найти высоту треугольника со сторонами 133, 117 и 64
Найти высоту треугольника со сторонами 60, 47 и 35
Найти высоту треугольника со сторонами 68, 53 и 51
Найти высоту треугольника со сторонами 130, 118 и 20
Найти высоту треугольника со сторонами 94, 65 и 32