Рассчитать высоту треугольника со сторонами 62, 50 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{62 + 50 + 46}{2}} \normalsize = 79}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{79(79-62)(79-50)(79-46)}}{50}\normalsize = 45.3475644}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{79(79-62)(79-50)(79-46)}}{62}\normalsize = 36.5706165}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{79(79-62)(79-50)(79-46)}}{46}\normalsize = 49.2908309}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 62, 50 и 46 равна 45.3475644
Высота треугольника опущенная с вершины A на сторону BC со сторонами 62, 50 и 46 равна 36.5706165
Высота треугольника опущенная с вершины C на сторону AB со сторонами 62, 50 и 46 равна 49.2908309
Ссылка на результат
?n1=62&n2=50&n3=46
Найти высоту треугольника со сторонами 109, 79 и 35
Найти высоту треугольника со сторонами 142, 106 и 77
Найти высоту треугольника со сторонами 82, 68 и 32
Найти высоту треугольника со сторонами 124, 123 и 63
Найти высоту треугольника со сторонами 136, 83 и 77
Найти высоту треугольника со сторонами 76, 59 и 43
Найти высоту треугольника со сторонами 142, 106 и 77
Найти высоту треугольника со сторонами 82, 68 и 32
Найти высоту треугольника со сторонами 124, 123 и 63
Найти высоту треугольника со сторонами 136, 83 и 77
Найти высоту треугольника со сторонами 76, 59 и 43