Рассчитать высоту треугольника со сторонами 116, 72 и 45

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 72 + 45}{2}} \normalsize = 116.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{116.5(116.5-116)(116.5-72)(116.5-45)}}{72}\normalsize = 11.9585491}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{116.5(116.5-116)(116.5-72)(116.5-45)}}{116}\normalsize = 7.42254771}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{116.5(116.5-116)(116.5-72)(116.5-45)}}{45}\normalsize = 19.1336785}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 72 и 45 равна 11.9585491
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 72 и 45 равна 7.42254771
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 72 и 45 равна 19.1336785
Ссылка на результат
?n1=116&n2=72&n3=45