Рассчитать высоту треугольника со сторонами 116, 75 и 45
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 75 + 45}{2}} \normalsize = 118}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118(118-116)(118-75)(118-45)}}{75}\normalsize = 22.9519924}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118(118-116)(118-75)(118-45)}}{116}\normalsize = 14.8396503}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118(118-116)(118-75)(118-45)}}{45}\normalsize = 38.2533207}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 75 и 45 равна 22.9519924
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 75 и 45 равна 14.8396503
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 75 и 45 равна 38.2533207
Ссылка на результат
?n1=116&n2=75&n3=45
Найти высоту треугольника со сторонами 88, 83 и 50
Найти высоту треугольника со сторонами 75, 58 и 55
Найти высоту треугольника со сторонами 141, 133 и 110
Найти высоту треугольника со сторонами 145, 135 и 64
Найти высоту треугольника со сторонами 67, 38 и 38
Найти высоту треугольника со сторонами 50, 50 и 44
Найти высоту треугольника со сторонами 75, 58 и 55
Найти высоту треугольника со сторонами 141, 133 и 110
Найти высоту треугольника со сторонами 145, 135 и 64
Найти высоту треугольника со сторонами 67, 38 и 38
Найти высоту треугольника со сторонами 50, 50 и 44