Рассчитать высоту треугольника со сторонами 116, 75 и 58
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 75 + 58}{2}} \normalsize = 124.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{124.5(124.5-116)(124.5-75)(124.5-58)}}{75}\normalsize = 49.7709916}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{124.5(124.5-116)(124.5-75)(124.5-58)}}{116}\normalsize = 32.1795204}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{124.5(124.5-116)(124.5-75)(124.5-58)}}{58}\normalsize = 64.3590408}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 75 и 58 равна 49.7709916
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 75 и 58 равна 32.1795204
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 75 и 58 равна 64.3590408
Ссылка на результат
?n1=116&n2=75&n3=58
Найти высоту треугольника со сторонами 110, 96 и 36
Найти высоту треугольника со сторонами 144, 107 и 51
Найти высоту треугольника со сторонами 68, 49 и 35
Найти высоту треугольника со сторонами 93, 74 и 59
Найти высоту треугольника со сторонами 82, 69 и 33
Найти высоту треугольника со сторонами 139, 132 и 15
Найти высоту треугольника со сторонами 144, 107 и 51
Найти высоту треугольника со сторонами 68, 49 и 35
Найти высоту треугольника со сторонами 93, 74 и 59
Найти высоту треугольника со сторонами 82, 69 и 33
Найти высоту треугольника со сторонами 139, 132 и 15