Рассчитать высоту треугольника со сторонами 116, 88 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 88 + 41}{2}} \normalsize = 122.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122.5(122.5-116)(122.5-88)(122.5-41)}}{88}\normalsize = 34.0063796}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122.5(122.5-116)(122.5-88)(122.5-41)}}{116}\normalsize = 25.7979431}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122.5(122.5-116)(122.5-88)(122.5-41)}}{41}\normalsize = 72.9893025}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 88 и 41 равна 34.0063796
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 88 и 41 равна 25.7979431
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 88 и 41 равна 72.9893025
Ссылка на результат
?n1=116&n2=88&n3=41
Найти высоту треугольника со сторонами 102, 98 и 68
Найти высоту треугольника со сторонами 147, 137 и 131
Найти высоту треугольника со сторонами 50, 48 и 44
Найти высоту треугольника со сторонами 142, 83 и 62
Найти высоту треугольника со сторонами 136, 83 и 62
Найти высоту треугольника со сторонами 142, 131 и 16
Найти высоту треугольника со сторонами 147, 137 и 131
Найти высоту треугольника со сторонами 50, 48 и 44
Найти высоту треугольника со сторонами 142, 83 и 62
Найти высоту треугольника со сторонами 136, 83 и 62
Найти высоту треугольника со сторонами 142, 131 и 16