Рассчитать высоту треугольника со сторонами 116, 90 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 90 + 36}{2}} \normalsize = 121}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121(121-116)(121-90)(121-36)}}{90}\normalsize = 28.0579207}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121(121-116)(121-90)(121-36)}}{116}\normalsize = 21.7690764}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121(121-116)(121-90)(121-36)}}{36}\normalsize = 70.1448017}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 90 и 36 равна 28.0579207
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 90 и 36 равна 21.7690764
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 90 и 36 равна 70.1448017
Ссылка на результат
?n1=116&n2=90&n3=36
Найти высоту треугольника со сторонами 59, 51 и 37
Найти высоту треугольника со сторонами 136, 107 и 46
Найти высоту треугольника со сторонами 58, 45 и 42
Найти высоту треугольника со сторонами 104, 93 и 43
Найти высоту треугольника со сторонами 127, 105 и 99
Найти высоту треугольника со сторонами 122, 118 и 22
Найти высоту треугольника со сторонами 136, 107 и 46
Найти высоту треугольника со сторонами 58, 45 и 42
Найти высоту треугольника со сторонами 104, 93 и 43
Найти высоту треугольника со сторонами 127, 105 и 99
Найти высоту треугольника со сторонами 122, 118 и 22