Рассчитать высоту треугольника со сторонами 116, 90 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 90 + 60}{2}} \normalsize = 133}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{133(133-116)(133-90)(133-60)}}{90}\normalsize = 59.2015974}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{133(133-116)(133-90)(133-60)}}{116}\normalsize = 45.9322739}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{133(133-116)(133-90)(133-60)}}{60}\normalsize = 88.8023961}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 90 и 60 равна 59.2015974
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 90 и 60 равна 45.9322739
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 90 и 60 равна 88.8023961
Ссылка на результат
?n1=116&n2=90&n3=60
Найти высоту треугольника со сторонами 104, 98 и 65
Найти высоту треугольника со сторонами 107, 87 и 80
Найти высоту треугольника со сторонами 124, 105 и 47
Найти высоту треугольника со сторонами 89, 74 и 70
Найти высоту треугольника со сторонами 108, 92 и 70
Найти высоту треугольника со сторонами 96, 89 и 89
Найти высоту треугольника со сторонами 107, 87 и 80
Найти высоту треугольника со сторонами 124, 105 и 47
Найти высоту треугольника со сторонами 89, 74 и 70
Найти высоту треугольника со сторонами 108, 92 и 70
Найти высоту треугольника со сторонами 96, 89 и 89