Рассчитать высоту треугольника со сторонами 116, 98 и 24
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 98 + 24}{2}} \normalsize = 119}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{119(119-116)(119-98)(119-24)}}{98}\normalsize = 17.2230268}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{119(119-116)(119-98)(119-24)}}{116}\normalsize = 14.5504882}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{119(119-116)(119-98)(119-24)}}{24}\normalsize = 70.3273595}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 98 и 24 равна 17.2230268
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 98 и 24 равна 14.5504882
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 98 и 24 равна 70.3273595
Ссылка на результат
?n1=116&n2=98&n3=24
Найти высоту треугольника со сторонами 83, 71 и 34
Найти высоту треугольника со сторонами 119, 114 и 89
Найти высоту треугольника со сторонами 110, 97 и 44
Найти высоту треугольника со сторонами 134, 133 и 77
Найти высоту треугольника со сторонами 137, 81 и 81
Найти высоту треугольника со сторонами 118, 114 и 16
Найти высоту треугольника со сторонами 119, 114 и 89
Найти высоту треугольника со сторонами 110, 97 и 44
Найти высоту треугольника со сторонами 134, 133 и 77
Найти высоту треугольника со сторонами 137, 81 и 81
Найти высоту треугольника со сторонами 118, 114 и 16