Рассчитать высоту треугольника со сторонами 116, 99 и 20
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 99 + 20}{2}} \normalsize = 117.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117.5(117.5-116)(117.5-99)(117.5-20)}}{99}\normalsize = 11.3906245}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117.5(117.5-116)(117.5-99)(117.5-20)}}{116}\normalsize = 9.72130886}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117.5(117.5-116)(117.5-99)(117.5-20)}}{20}\normalsize = 56.3835914}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 99 и 20 равна 11.3906245
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 99 и 20 равна 9.72130886
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 99 и 20 равна 56.3835914
Ссылка на результат
?n1=116&n2=99&n3=20
Найти высоту треугольника со сторонами 141, 134 и 30
Найти высоту треугольника со сторонами 135, 97 и 43
Найти высоту треугольника со сторонами 62, 62 и 45
Найти высоту треугольника со сторонами 146, 141 и 98
Найти высоту треугольника со сторонами 143, 136 и 133
Найти высоту треугольника со сторонами 135, 108 и 104
Найти высоту треугольника со сторонами 135, 97 и 43
Найти высоту треугольника со сторонами 62, 62 и 45
Найти высоту треугольника со сторонами 146, 141 и 98
Найти высоту треугольника со сторонами 143, 136 и 133
Найти высоту треугольника со сторонами 135, 108 и 104