Рассчитать высоту треугольника со сторонами 117, 115 и 105
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 115 + 105}{2}} \normalsize = 168.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{168.5(168.5-117)(168.5-115)(168.5-105)}}{115}\normalsize = 94.427714}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{168.5(168.5-117)(168.5-115)(168.5-105)}}{117}\normalsize = 92.8135651}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{168.5(168.5-117)(168.5-115)(168.5-105)}}{105}\normalsize = 103.42083}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 115 и 105 равна 94.427714
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 115 и 105 равна 92.8135651
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 115 и 105 равна 103.42083
Ссылка на результат
?n1=117&n2=115&n3=105
Найти высоту треугольника со сторонами 139, 111 и 81
Найти высоту треугольника со сторонами 55, 39 и 27
Найти высоту треугольника со сторонами 141, 137 и 26
Найти высоту треугольника со сторонами 114, 74 и 42
Найти высоту треугольника со сторонами 118, 99 и 56
Найти высоту треугольника со сторонами 105, 89 и 20
Найти высоту треугольника со сторонами 55, 39 и 27
Найти высоту треугольника со сторонами 141, 137 и 26
Найти высоту треугольника со сторонами 114, 74 и 42
Найти высоту треугольника со сторонами 118, 99 и 56
Найти высоту треугольника со сторонами 105, 89 и 20