Рассчитать высоту треугольника со сторонами 117, 117 и 107
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 117 + 107}{2}} \normalsize = 170.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{170.5(170.5-117)(170.5-117)(170.5-107)}}{117}\normalsize = 95.1583647}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{170.5(170.5-117)(170.5-117)(170.5-107)}}{117}\normalsize = 95.1583647}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{170.5(170.5-117)(170.5-117)(170.5-107)}}{107}\normalsize = 104.05167}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 117 и 107 равна 95.1583647
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 117 и 107 равна 95.1583647
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 117 и 107 равна 104.05167
Ссылка на результат
?n1=117&n2=117&n3=107
Найти высоту треугольника со сторонами 128, 114 и 18
Найти высоту треугольника со сторонами 99, 94 и 14
Найти высоту треугольника со сторонами 103, 85 и 22
Найти высоту треугольника со сторонами 126, 81 и 72
Найти высоту треугольника со сторонами 143, 131 и 17
Найти высоту треугольника со сторонами 102, 85 и 66
Найти высоту треугольника со сторонами 99, 94 и 14
Найти высоту треугольника со сторонами 103, 85 и 22
Найти высоту треугольника со сторонами 126, 81 и 72
Найти высоту треугольника со сторонами 143, 131 и 17
Найти высоту треугольника со сторонами 102, 85 и 66