Рассчитать высоту треугольника со сторонами 117, 70 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 70 + 60}{2}} \normalsize = 123.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{123.5(123.5-117)(123.5-70)(123.5-60)}}{70}\normalsize = 47.1830343}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{123.5(123.5-117)(123.5-70)(123.5-60)}}{117}\normalsize = 28.2291658}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{123.5(123.5-117)(123.5-70)(123.5-60)}}{60}\normalsize = 55.0468733}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 70 и 60 равна 47.1830343
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 70 и 60 равна 28.2291658
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 70 и 60 равна 55.0468733
Ссылка на результат
?n1=117&n2=70&n3=60
Найти высоту треугольника со сторонами 112, 75 и 40
Найти высоту треугольника со сторонами 111, 93 и 79
Найти высоту треугольника со сторонами 126, 117 и 29
Найти высоту треугольника со сторонами 118, 83 и 72
Найти высоту треугольника со сторонами 133, 118 и 26
Найти высоту треугольника со сторонами 79, 58 и 46
Найти высоту треугольника со сторонами 111, 93 и 79
Найти высоту треугольника со сторонами 126, 117 и 29
Найти высоту треугольника со сторонами 118, 83 и 72
Найти высоту треугольника со сторонами 133, 118 и 26
Найти высоту треугольника со сторонами 79, 58 и 46