Рассчитать высоту треугольника со сторонами 118, 107 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{118 + 107 + 33}{2}} \normalsize = 129}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129(129-118)(129-107)(129-33)}}{107}\normalsize = 32.3582013}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129(129-118)(129-107)(129-33)}}{118}\normalsize = 29.3417588}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129(129-118)(129-107)(129-33)}}{33}\normalsize = 104.919016}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 118, 107 и 33 равна 32.3582013
Высота треугольника опущенная с вершины A на сторону BC со сторонами 118, 107 и 33 равна 29.3417588
Высота треугольника опущенная с вершины C на сторону AB со сторонами 118, 107 и 33 равна 104.919016
Ссылка на результат
?n1=118&n2=107&n3=33
Найти высоту треугольника со сторонами 149, 121 и 50
Найти высоту треугольника со сторонами 134, 113 и 109
Найти высоту треугольника со сторонами 128, 121 и 61
Найти высоту треугольника со сторонами 109, 87 и 64
Найти высоту треугольника со сторонами 82, 73 и 65
Найти высоту треугольника со сторонами 129, 112 и 61
Найти высоту треугольника со сторонами 134, 113 и 109
Найти высоту треугольника со сторонами 128, 121 и 61
Найти высоту треугольника со сторонами 109, 87 и 64
Найти высоту треугольника со сторонами 82, 73 и 65
Найти высоту треугольника со сторонами 129, 112 и 61