Рассчитать высоту треугольника со сторонами 118, 114 и 93
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{118 + 114 + 93}{2}} \normalsize = 162.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{162.5(162.5-118)(162.5-114)(162.5-93)}}{114}\normalsize = 86.6153978}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{162.5(162.5-118)(162.5-114)(162.5-93)}}{118}\normalsize = 83.6792826}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{162.5(162.5-118)(162.5-114)(162.5-93)}}{93}\normalsize = 106.173713}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 118, 114 и 93 равна 86.6153978
Высота треугольника опущенная с вершины A на сторону BC со сторонами 118, 114 и 93 равна 83.6792826
Высота треугольника опущенная с вершины C на сторону AB со сторонами 118, 114 и 93 равна 106.173713
Ссылка на результат
?n1=118&n2=114&n3=93
Найти высоту треугольника со сторонами 143, 127 и 62
Найти высоту треугольника со сторонами 55, 35 и 24
Найти высоту треугольника со сторонами 87, 73 и 27
Найти высоту треугольника со сторонами 90, 71 и 60
Найти высоту треугольника со сторонами 149, 87 и 76
Найти высоту треугольника со сторонами 138, 131 и 61
Найти высоту треугольника со сторонами 55, 35 и 24
Найти высоту треугольника со сторонами 87, 73 и 27
Найти высоту треугольника со сторонами 90, 71 и 60
Найти высоту треугольника со сторонами 149, 87 и 76
Найти высоту треугольника со сторонами 138, 131 и 61