Рассчитать высоту треугольника со сторонами 118, 99 и 38
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{118 + 99 + 38}{2}} \normalsize = 127.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{127.5(127.5-118)(127.5-99)(127.5-38)}}{99}\normalsize = 35.5095888}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{127.5(127.5-118)(127.5-99)(127.5-38)}}{118}\normalsize = 29.7919432}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{127.5(127.5-118)(127.5-99)(127.5-38)}}{38}\normalsize = 92.5118236}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 118, 99 и 38 равна 35.5095888
Высота треугольника опущенная с вершины A на сторону BC со сторонами 118, 99 и 38 равна 29.7919432
Высота треугольника опущенная с вершины C на сторону AB со сторонами 118, 99 и 38 равна 92.5118236
Ссылка на результат
?n1=118&n2=99&n3=38
Найти высоту треугольника со сторонами 132, 109 и 69
Найти высоту треугольника со сторонами 4, 3 и 3
Найти высоту треугольника со сторонами 102, 76 и 30
Найти высоту треугольника со сторонами 55, 46 и 43
Найти высоту треугольника со сторонами 139, 139 и 71
Найти высоту треугольника со сторонами 86, 73 и 42
Найти высоту треугольника со сторонами 4, 3 и 3
Найти высоту треугольника со сторонами 102, 76 и 30
Найти высоту треугольника со сторонами 55, 46 и 43
Найти высоту треугольника со сторонами 139, 139 и 71
Найти высоту треугольника со сторонами 86, 73 и 42