Рассчитать высоту треугольника со сторонами 119, 103 и 98

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 103 + 98}{2}} \normalsize = 160}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{160(160-119)(160-103)(160-98)}}{103}\normalsize = 93.4927562}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{160(160-119)(160-103)(160-98)}}{119}\normalsize = 80.9223016}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{160(160-119)(160-103)(160-98)}}{98}\normalsize = 98.2627948}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 103 и 98 равна 93.4927562
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 103 и 98 равна 80.9223016
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 103 и 98 равна 98.2627948
Ссылка на результат
?n1=119&n2=103&n3=98