Рассчитать высоту треугольника со сторонами 119, 111 и 101
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 111 + 101}{2}} \normalsize = 165.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{165.5(165.5-119)(165.5-111)(165.5-101)}}{111}\normalsize = 93.7153218}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{165.5(165.5-119)(165.5-111)(165.5-101)}}{119}\normalsize = 87.4151321}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{165.5(165.5-119)(165.5-111)(165.5-101)}}{101}\normalsize = 102.994067}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 111 и 101 равна 93.7153218
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 111 и 101 равна 87.4151321
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 111 и 101 равна 102.994067
Ссылка на результат
?n1=119&n2=111&n3=101
Найти высоту треугольника со сторонами 117, 99 и 79
Найти высоту треугольника со сторонами 142, 132 и 44
Найти высоту треугольника со сторонами 107, 89 и 40
Найти высоту треугольника со сторонами 82, 70 и 47
Найти высоту треугольника со сторонами 142, 111 и 51
Найти высоту треугольника со сторонами 122, 112 и 11
Найти высоту треугольника со сторонами 142, 132 и 44
Найти высоту треугольника со сторонами 107, 89 и 40
Найти высоту треугольника со сторонами 82, 70 и 47
Найти высоту треугольника со сторонами 142, 111 и 51
Найти высоту треугольника со сторонами 122, 112 и 11