Рассчитать высоту треугольника со сторонами 119, 114 и 50

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 114 + 50}{2}} \normalsize = 141.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{141.5(141.5-119)(141.5-114)(141.5-50)}}{114}\normalsize = 49.6559754}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{141.5(141.5-119)(141.5-114)(141.5-50)}}{119}\normalsize = 47.5695899}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{141.5(141.5-119)(141.5-114)(141.5-50)}}{50}\normalsize = 113.215624}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 114 и 50 равна 49.6559754
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 114 и 50 равна 47.5695899
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 114 и 50 равна 113.215624
Ссылка на результат
?n1=119&n2=114&n3=50