Рассчитать высоту треугольника со сторонами 150, 107 и 83

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 107 + 83}{2}} \normalsize = 170}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{170(170-150)(170-107)(170-83)}}{107}\normalsize = 80.6892312}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{170(170-150)(170-107)(170-83)}}{150}\normalsize = 57.5583183}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{170(170-150)(170-107)(170-83)}}{83}\normalsize = 104.021057}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 107 и 83 равна 80.6892312
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 107 и 83 равна 57.5583183
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 107 и 83 равна 104.021057
Ссылка на результат
?n1=150&n2=107&n3=83