Рассчитать высоту треугольника со сторонами 119, 114 и 68
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 114 + 68}{2}} \normalsize = 150.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{150.5(150.5-119)(150.5-114)(150.5-68)}}{114}\normalsize = 66.2860405}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{150.5(150.5-119)(150.5-114)(150.5-68)}}{119}\normalsize = 63.5009127}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{150.5(150.5-119)(150.5-114)(150.5-68)}}{68}\normalsize = 111.126597}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 114 и 68 равна 66.2860405
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 114 и 68 равна 63.5009127
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 114 и 68 равна 111.126597
Ссылка на результат
?n1=119&n2=114&n3=68
Найти высоту треугольника со сторонами 146, 136 и 36
Найти высоту треугольника со сторонами 26, 26 и 12
Найти высоту треугольника со сторонами 132, 87 и 82
Найти высоту треугольника со сторонами 144, 143 и 56
Найти высоту треугольника со сторонами 123, 83 и 74
Найти высоту треугольника со сторонами 89, 77 и 57
Найти высоту треугольника со сторонами 26, 26 и 12
Найти высоту треугольника со сторонами 132, 87 и 82
Найти высоту треугольника со сторонами 144, 143 и 56
Найти высоту треугольника со сторонами 123, 83 и 74
Найти высоту треугольника со сторонами 89, 77 и 57