Рассчитать высоту треугольника со сторонами 119, 115 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 115 + 19}{2}} \normalsize = 126.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{126.5(126.5-119)(126.5-115)(126.5-19)}}{115}\normalsize = 18.8348082}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{126.5(126.5-119)(126.5-115)(126.5-19)}}{119}\normalsize = 18.2017054}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{126.5(126.5-119)(126.5-115)(126.5-19)}}{19}\normalsize = 114.000155}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 115 и 19 равна 18.8348082
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 115 и 19 равна 18.2017054
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 115 и 19 равна 114.000155
Ссылка на результат
?n1=119&n2=115&n3=19
Найти высоту треугольника со сторонами 147, 116 и 69
Найти высоту треугольника со сторонами 132, 85 и 71
Найти высоту треугольника со сторонами 102, 86 и 49
Найти высоту треугольника со сторонами 133, 122 и 20
Найти высоту треугольника со сторонами 136, 133 и 21
Найти высоту треугольника со сторонами 126, 106 и 48
Найти высоту треугольника со сторонами 132, 85 и 71
Найти высоту треугольника со сторонами 102, 86 и 49
Найти высоту треугольника со сторонами 133, 122 и 20
Найти высоту треугольника со сторонами 136, 133 и 21
Найти высоту треугольника со сторонами 126, 106 и 48