Рассчитать высоту треугольника со сторонами 119, 74 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 74 + 56}{2}} \normalsize = 124.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{124.5(124.5-119)(124.5-74)(124.5-56)}}{74}\normalsize = 41.5963545}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{124.5(124.5-119)(124.5-74)(124.5-56)}}{119}\normalsize = 25.8666406}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{124.5(124.5-119)(124.5-74)(124.5-56)}}{56}\normalsize = 54.9666114}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 74 и 56 равна 41.5963545
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 74 и 56 равна 25.8666406
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 74 и 56 равна 54.9666114
Ссылка на результат
?n1=119&n2=74&n3=56
Найти высоту треугольника со сторонами 131, 88 и 72
Найти высоту треугольника со сторонами 139, 121 и 75
Найти высоту треугольника со сторонами 104, 88 и 62
Найти высоту треугольника со сторонами 89, 86 и 10
Найти высоту треугольника со сторонами 140, 124 и 97
Найти высоту треугольника со сторонами 112, 75 и 53
Найти высоту треугольника со сторонами 139, 121 и 75
Найти высоту треугольника со сторонами 104, 88 и 62
Найти высоту треугольника со сторонами 89, 86 и 10
Найти высоту треугольника со сторонами 140, 124 и 97
Найти высоту треугольника со сторонами 112, 75 и 53