Рассчитать высоту треугольника со сторонами 119, 91 и 86
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 91 + 86}{2}} \normalsize = 148}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148(148-119)(148-91)(148-86)}}{91}\normalsize = 85.5956576}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148(148-119)(148-91)(148-86)}}{119}\normalsize = 65.4555028}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148(148-119)(148-91)(148-86)}}{86}\normalsize = 90.5721493}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 91 и 86 равна 85.5956576
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 91 и 86 равна 65.4555028
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 91 и 86 равна 90.5721493
Ссылка на результат
?n1=119&n2=91&n3=86
Найти высоту треугольника со сторонами 147, 87 и 64
Найти высоту треугольника со сторонами 139, 100 и 83
Найти высоту треугольника со сторонами 123, 103 и 59
Найти высоту треугольника со сторонами 68, 60 и 55
Найти высоту треугольника со сторонами 123, 99 и 46
Найти высоту треугольника со сторонами 132, 111 и 23
Найти высоту треугольника со сторонами 139, 100 и 83
Найти высоту треугольника со сторонами 123, 103 и 59
Найти высоту треугольника со сторонами 68, 60 и 55
Найти высоту треугольника со сторонами 123, 99 и 46
Найти высоту треугольника со сторонами 132, 111 и 23