Рассчитать высоту треугольника со сторонами 120, 114 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 114 + 15}{2}} \normalsize = 124.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{124.5(124.5-120)(124.5-114)(124.5-15)}}{114}\normalsize = 14.0804906}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{124.5(124.5-120)(124.5-114)(124.5-15)}}{120}\normalsize = 13.376466}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{124.5(124.5-120)(124.5-114)(124.5-15)}}{15}\normalsize = 107.011728}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 114 и 15 равна 14.0804906
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 114 и 15 равна 13.376466
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 114 и 15 равна 107.011728
Ссылка на результат
?n1=120&n2=114&n3=15
Найти высоту треугольника со сторонами 141, 78 и 73
Найти высоту треугольника со сторонами 130, 98 и 65
Найти высоту треугольника со сторонами 112, 80 и 64
Найти высоту треугольника со сторонами 25, 19 и 14
Найти высоту треугольника со сторонами 96, 93 и 60
Найти высоту треугольника со сторонами 141, 123 и 28
Найти высоту треугольника со сторонами 130, 98 и 65
Найти высоту треугольника со сторонами 112, 80 и 64
Найти высоту треугольника со сторонами 25, 19 и 14
Найти высоту треугольника со сторонами 96, 93 и 60
Найти высоту треугольника со сторонами 141, 123 и 28